o
    f9                     @  sD  U d Z ddlmZ ddlZddlmZ ddlmZmZm	Z	m
Z
mZmZ ddlmZmZ ddlmZ ddlmZmZmZ d	d
lmZ d	dlmZmZ d	dlmZ ejd@i ejddiG dd dZejd@i ejddiG dd dZeree eeef e!eef ee f Z"de#d< eej$e"f Z%eej&e"f Z'e
de%dZ(e
de'dZ)edddddAd%d&Z*edddddBd)d&Z*edddddCd,d&Z*d-ed.dd/dDd2d&Z*e
d3e	def dZ+edEd5d6Z,edd.dd7dFd9d6Z,	dGd-d.ed7dHd<d6Z,e
d=Z-eree-df Z.dS ejd@i ejG d>d? d?Z.dS )IzEThis module contains related classes and functions for serialization.    )annotationsN)partialmethod)TYPE_CHECKINGAnyCallableTypeVarUnionoverload)PydanticUndefinedcore_schema)r   )	AnnotatedLiteral	TypeAlias   )PydanticUndefinedAnnotation)_decorators_internal_dataclass)GetCoreSchemaHandlerfrozenTc                   @  <   e Zd ZU dZded< eZded< dZded< dddZdS )PlainSerializeraC  Plain serializers use a function to modify the output of serialization.

    This is particularly helpful when you want to customize the serialization for annotated types.
    Consider an input of `list`, which will be serialized into a space-delimited string.

    ```python
    from typing import List

    from typing_extensions import Annotated

    from pydantic import BaseModel, PlainSerializer

    CustomStr = Annotated[
        List, PlainSerializer(lambda x: ' '.join(x), return_type=str)
    ]

    class StudentModel(BaseModel):
        courses: CustomStr

    student = StudentModel(courses=['Math', 'Chemistry', 'English'])
    print(student.model_dump())
    #> {'courses': 'Math Chemistry English'}
    ```

    Attributes:
        func: The serializer function.
        return_type: The return type for the function. If omitted it will be inferred from the type annotation.
        when_used: Determines when this serializer should be used. Accepts a string with values `'always'`,
            `'unless-none'`, `'json'`, and `'json-unless-none'`. Defaults to 'always'.
    zcore_schema.SerializerFunctionfuncr   return_typealways<Literal['always', 'unless-none', 'json', 'json-unless-none']	when_usedsource_typehandlerr   returncore_schema.CoreSchemac              
   C     ||}zt | j| j| }W n ty# } zt||d}~ww |tu r*dn|	|}t
j| jt | jd|| jd|d< |S )zGets the Pydantic core schema.

        Args:
            source_type: The source type.
            handler: The `GetCoreSchemaHandler` instance.

        Returns:
            The Pydantic core schema.
        Nplainfunctioninfo_argreturn_schemar   serialization)r   get_function_return_typer   r   _get_types_namespace	NameErrorr   from_name_errorr
   generate_schemar   $plain_serializer_function_ser_schemainspect_annotated_serializerr   selfr   r   schemar   er%    r2   W/var/www/NoticeGen/venv/lib/python3.10/site-packages/pydantic/functional_serializers.py__get_pydantic_core_schema__7   "   

z,PlainSerializer.__get_pydantic_core_schema__Nr   r   r   r   r   r   	__name__
__module____qualname____doc____annotations__r
   r   r   r4   r2   r2   r2   r3   r      s   
 r   c                   @  r   )WrapSerializera	  Wrap serializers receive the raw inputs along with a handler function that applies the standard serialization
    logic, and can modify the resulting value before returning it as the final output of serialization.

    For example, here's a scenario in which a wrap serializer transforms timezones to UTC **and** utilizes the existing `datetime` serialization logic.

    ```python
    from datetime import datetime, timezone
    from typing import Any, Dict

    from typing_extensions import Annotated

    from pydantic import BaseModel, WrapSerializer

    class EventDatetime(BaseModel):
        start: datetime
        end: datetime

    def convert_to_utc(value: Any, handler, info) -> Dict[str, datetime]:
        # Note that `helper` can actually help serialize the `value` for further custom serialization in case it's a subclass.
        partial_result = handler(value, info)
        if info.mode == 'json':
            return {
                k: datetime.fromisoformat(v).astimezone(timezone.utc)
                for k, v in partial_result.items()
            }
        return {k: v.astimezone(timezone.utc) for k, v in partial_result.items()}

    UTCEventDatetime = Annotated[EventDatetime, WrapSerializer(convert_to_utc)]

    class EventModel(BaseModel):
        event_datetime: UTCEventDatetime

    dt = EventDatetime(
        start='2024-01-01T07:00:00-08:00', end='2024-01-03T20:00:00+06:00'
    )
    event = EventModel(event_datetime=dt)
    print(event.model_dump())
    '''
    {
        'event_datetime': {
            'start': datetime.datetime(
                2024, 1, 1, 15, 0, tzinfo=datetime.timezone.utc
            ),
            'end': datetime.datetime(
                2024, 1, 3, 14, 0, tzinfo=datetime.timezone.utc
            ),
        }
    }
    '''

    print(event.model_dump_json())
    '''
    {"event_datetime":{"start":"2024-01-01T15:00:00Z","end":"2024-01-03T14:00:00Z"}}
    '''
    ```

    Attributes:
        func: The serializer function to be wrapped.
        return_type: The return type for the function. If omitted it will be inferred from the type annotation.
        when_used: Determines when this serializer should be used. Accepts a string with values `'always'`,
            `'unless-none'`, `'json'`, and `'json-unless-none'`. Defaults to 'always'.
    z"core_schema.WrapSerializerFunctionr   r   r   r   r   r   r   r   r   r   r   c              
   C  r    )zThis method is used to get the Pydantic core schema of the class.

        Args:
            source_type: Source type.
            handler: Core schema handler.

        Returns:
            The generated core schema of the class.
        Nwrapr"   r&   )r   r'   r   r   r(   r)   r   r*   r
   r+   r   #wrap_serializer_function_ser_schemar-   r   r.   r2   r2   r3   r4      r5   z+WrapSerializer.__get_pydantic_core_schema__Nr6   r7   r2   r2   r2   r3   r=   R   s   
 ?r=   r   _PartialClsOrStaticMethod_PlainSerializeMethodType)bound_WrapSerializeMethodType.)r   r   check_fieldsfieldstrfieldsr   r   r   r   rD   bool | Noner   @Callable[[_PlainSerializeMethodType], _PlainSerializeMethodType]c               G     d S Nr2   )rE   r   r   rD   rG   r2   r2   r3   field_serializer   s   rL   modeLiteral['plain']c               G  rJ   rK   r2   rE   rM   r   r   rD   rG   r2   r2   r3   rL         	Literal['wrap']>Callable[[_WrapSerializeMethodType], _WrapSerializeMethodType]c               G  rJ   rK   r2   rO   r2   r2   r3   rL      rP   r!   r   )rM   r   r   rD   Literal['plain', 'wrap']Callable[[Any], Any]c                   s   d fdd}|S )	a  Decorator that enables custom field serialization.

    In the below example, a field of type `set` is used to mitigate duplication. A `field_serializer` is used to serialize the data as a sorted list.

    ```python
    from typing import Set

    from pydantic import BaseModel, field_serializer

    class StudentModel(BaseModel):
        name: str = 'Jane'
        courses: Set[str]

        @field_serializer('courses', when_used='json')
        def serialize_courses_in_order(courses: Set[str]):
            return sorted(courses)

    student = StudentModel(courses={'Math', 'Chemistry', 'English'})
    print(student.model_dump_json())
    #> {"name":"Jane","courses":["Chemistry","English","Math"]}
    ```

    See [Custom serializers](../concepts/serialization.md#custom-serializers) for more information.

    Four signatures are supported:

    - `(self, value: Any, info: FieldSerializationInfo)`
    - `(self, value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo)`
    - `(value: Any, info: SerializationInfo)`
    - `(value: Any, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)`

    Args:
        fields: Which field(s) the method should be called on.
        mode: The serialization mode.

            - `plain` means the function will be called instead of the default serialization logic,
            - `wrap` means the function will be called with an argument to optionally call the
               default serialization logic.
        return_type: Optional return type for the function, if omitted it will be inferred from the type annotation.
        when_used: Determines the serializer will be used for serialization.
        check_fields: Whether to check that the fields actually exist on the model.

    Returns:
        The decorator function.
    fHCallable[..., Any] | staticmethod[Any, Any] | classmethod[Any, Any, Any]r   (_decorators.PydanticDescriptorProxy[Any]c                   s    t j d}t | |S )N)rG   rM   r   r   rD   )r   FieldSerializerDecoratorInfoPydanticDescriptorProxyrU   dec_inforD   rG   rM   r   r   r2   r3   dec  s   zfield_serializer.<locals>.decN)rU   rV   r   rW   r2   )rM   r   r   rD   rG   r]   r2   r\   r3   rL      s   5FuncType__fc                 C  rJ   rK   r2   )r_   r2   r2   r3   model_serializer$  s   r`   rM   r   r   Callable[[FuncType], FuncType]c                 C  rJ   rK   r2   ra   r2   r2   r3   r`   (  s   rU   Callable[..., Any] | Nonec                 s&   d fdd}| du r|S || S )	a  Decorator that enables custom model serialization.

    This is useful when a model need to be serialized in a customized manner, allowing for flexibility beyond just specific fields.

    An example would be to serialize temperature to the same temperature scale, such as degrees Celsius.

    ```python
    from typing import Literal

    from pydantic import BaseModel, model_serializer

    class TemperatureModel(BaseModel):
        unit: Literal['C', 'F']
        value: int

        @model_serializer()
        def serialize_model(self):
            if self.unit == 'F':
                return {'unit': 'C', 'value': int((self.value - 32) / 1.8)}
            return {'unit': self.unit, 'value': self.value}

    temperature = TemperatureModel(unit='F', value=212)
    print(temperature.model_dump())
    #> {'unit': 'C', 'value': 100}
    ```

    See [Custom serializers](../concepts/serialization.md#custom-serializers) for more information.

    Args:
        f: The function to be decorated.
        mode: The serialization mode.

            - `'plain'` means the function will be called instead of the default serialization logic
            - `'wrap'` means the function will be called with an argument to optionally call the default
                serialization logic.
        when_used: Determines when this serializer should be used.
        return_type: The return type for the function. If omitted it will be inferred from the type annotation.

    Returns:
        The decorator function.
    rU   Callable[..., Any]r   rW   c                   s   t j d}t | |S )NrM   r   r   )r   ModelSerializerDecoratorInforY   rZ   re   r2   r3   r]   c  s   zmodel_serializer.<locals>.decN)rU   rd   r   rW   r2   )rU   rM   r   r   r]   r2   re   r3   r`   1  s   2AnyTypec                   @  s&   e Zd ZdddZdd
dZejZdS )SerializeAsAnyitemr   r   c                 C  s   t |t f S rK   )r   rh   )clsri   r2   r2   r3   __class_getitem__{  s   z SerializeAsAny.__class_getitem__r   r   r   r   c                 C  sR   ||}|}|d dkr|  }|d }|d dkstjdd t d|d< |S )Ntypedefinitionsr0   c                 S  s   || S rK   r2   )xhr2   r2   r3   <lambda>  s    z=SerializeAsAny.__get_pydantic_core_schema__.<locals>.<lambda>)r0   r&   )copyr   r?   
any_schema)r/   r   r   r0   schema_to_updater2   r2   r3   r4   ~  s   
z+SerializeAsAny.__get_pydantic_core_schema__N)ri   r   r   r   r6   )r8   r9   r:   rk   r4   object__hash__r2   r2   r2   r3   rh   y  s    


rh   r2   )rE   rF   rG   rF   r   r   r   r   rD   rH   r   rI   )rE   rF   rG   rF   rM   rN   r   r   r   r   rD   rH   r   rI   )rE   rF   rG   rF   rM   rQ   r   r   r   r   rD   rH   r   rR   )rG   rF   rM   rS   r   r   r   r   rD   rH   r   rT   )r_   r^   r   r^   )rM   rS   r   r   r   r   r   rb   rK   )
rU   rc   rM   rS   r   r   r   r   r   rT   )/r;   
__future__r   dataclasses	functoolsr   typingr   r   r   r   r   r	   pydantic_corer
   r   _core_schematyping_extensionsr   r   r    r   	_internalr   r   annotated_handlersr   	dataclass
slots_truer   r=   classmethodstaticmethodr@   r<   SerializerFunction_PlainSerializationFunctionWrapSerializerFunction_WrapSerializationFunctionrA   rC   rL   r^   r`   rg   rh   r2   r2   r2   r3   <module>   sz     ?_,
D	<